Package: NRejections 1.2.0
NRejections: Metrics for Multiple Testing with Correlated Outcomes
Implements methods in Mathur and VanderWeele (in preparation) to characterize global evidence strength across W correlated ordinary least squares (OLS) hypothesis tests. Specifically, uses resampling to estimate a null interval for the total number of rejections in, for example, 95% of samples generated with no associations (the global null), the excess hits (the difference between the observed number of rejections and the upper limit of the null interval), and a test of the global null based on the number of rejections.
Authors:
NRejections_1.2.0.tar.gz
NRejections_1.2.0.zip(r-4.5)NRejections_1.2.0.zip(r-4.4)NRejections_1.2.0.zip(r-4.3)
NRejections_1.2.0.tgz(r-4.4-any)NRejections_1.2.0.tgz(r-4.3-any)
NRejections_1.2.0.tar.gz(r-4.5-noble)NRejections_1.2.0.tar.gz(r-4.4-noble)
NRejections_1.2.0.tgz(r-4.4-emscripten)NRejections_1.2.0.tgz(r-4.3-emscripten)
NRejections.pdf |NRejections.html✨
NRejections/json (API)
# Install 'NRejections' in R: |
install.packages('NRejections', repos = c('https://mayamathur.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:86a425e9a2. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win | OK | Nov 07 2024 |
R-4.5-linux | OK | Nov 07 2024 |
R-4.4-win | OK | Nov 07 2024 |
R-4.4-mac | OK | Nov 07 2024 |
R-4.3-win | OK | Nov 07 2024 |
R-4.3-mac | OK | Nov 07 2024 |
Exports:adj_minPadj_Wstepcell_corrcorr_testsdataset_resultfit_modelfix_inputget_critmake_corr_matresample_residsim_data
Dependencies:codetoolsdoParallelforeachiteratorsmatrixcalcmvtnormRcppRcppArmadilloStepwiseTest
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Adjust p-values using minP | adj_minP |
Return Wstep-adjusted p-values | adj_Wstep |
Cell correlation for simulating data | cell_corr |
Global evidence strength across correlated tests | corr_tests |
Fit all models for a single dataset | dataset_result |
Fit OLS model for a single outcome | fit_model |
Fix bad user input | fix_input |
Return ordered critical values for Wstep | get_crit |
Makes correlation matrix to simulate data | make_corr_mat |
Resample residuals for OLS | resample_resid |
Simulate MVN data | sim_data |